Açık biyomedikal verilerin anlamsal ağ teknolojileri ile bütünleştirilmesi ve çizge madenciliği ile analizi

Yükleniyor...
Küçük Resim

Tarih

2020

Yazarlar

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ege Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Son zamanlarda, gerçek dünyadaki varlıklar ve bunların birbiriyle ilişkileri hakkında milyonlarca gerçekler (ifadeler) içeren büyük bilgi tabanlarının oluşturulması oldukça ilgi görmektedir. Günümüzde biyomedikal alandaki bir çok verinin Anlamsal Web teknolojileri ile erişebilir olması sayesinde bu bilgi tabanları Bağlı Veri formunda olan bilge çizgeleri olarak sunulmaktadır. Bilgi çizgeleri, veriyi tanımlamada güçlü bir model sunmakta ve aynı zamanda altında yatan çizge yapısı sayesinde çizge madenciliği algoritmalarının uygulanmasını mümkün kılmaktadır. Bu çalışmada büyük bilgi çizgelerinde eksik bağlantıları keşfetmek ve yeni bağlantıları tahmin etmek için çeşitli yaklaşımlar sunulmuştur. Bu proje kapsamında biyolojik ve biyomedikal bilgi ağlarında varlıklar arasında yeni bağları keşfetmek için bilgi çizgeleri kullanarak makine öğrenmesi temelli melez bir yaklaşım önerilmiştir. Yeni ilişkilerin tahmini için çizgenin yapısal ve anlamsal özelliklerine dayanan iki öznitelik grubu, yerel ve global öznitelikler, kullanılmıştır. Yerel öznitelikler, ağ yakınlıklarına ve global öznitelikler ise anlamsal çizgenin vektör temsiline dayanır. Bu iki öznitelik grubu ile eğitilen makine öğrenmesi modelleri, ayrı ayrı ve bütünleştirilerek bağ tahmini için kullanılmıştır. Ayrıca bağ tahmini yöntemlerinin değerlendirilmesinde göz ardı edilen durumlar için test senaryoları geliştirilmiş ve bu test senaryoları için önerilen yöntemin başarısı denenmiştir. Önerilen yaklaşımların yararlılığı biyomedikal alanda halk sağlığı için önemli olan bir problem olan yeni ilaç-ilaç etkileşimi tahmini için başarılı bir şekilde uygulanarak gösterilmiştir. Yöntemin mevcut yaklaşımlara üstünlüğü böylece kanıtlanmıştır.

The construction of large knowledge bases which contain large volumes of data about real world objects and their relationships has been an object of great interest in recent times. Nowadays, many databases in the biomedical field are accessible through Semantic Web technologies, so these databases have been presented as knowledge graphs in the form of Linked Data. The knowledge graphs are powerful models for defining data which also enable the application of graph mining algorithms thanks to the underlying graph structure. A number of approaches for the discovery of missing links and prediction of new links in large knowledge graphs is presented within this project. A hybrid approach based on machine learning which uses knowledge graphs to discover new links between entities in biological and biomedical information network is proposed. Two groups of features, local and global features, based on structural and semantic properties of the knowledge graphs, are used for the link prediction. Local features are based on network proximity and global features are based on vector representation of the semantic graph. The machine learning models trained with these two feature groups were evaluated separately and jointly. In addition, test scenarios were developed for cases that were often ignored in evaluating link prediction methods, and the proposed methods applied to these scenarios were tested. The utility of the proposed approaches was demonstrated by successfully applying them on an important problem in the biomedical field; predicting new drug-drug interactions. The method’s superiority over existing approaches were thereby demonstrated.

Açıklama

Anahtar Kelimeler

Anlamsal Web, Bağ Tahmini, Biyomedikal Ağlar, Bağlı Açık Veri, Bilgi Çizgeleri, Vektör Tabanlı Çizge Gömmesi, Makine Öğrenmesi, Semantic Web, Link Prediction, Biomedical Networks, Machine Learning, Linked Open Data, Knowledge Graphs, Vector Based Graph Embedding

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye