Görüntüler üzerinde öznitelik çıkarma ve seçimine odaklı bir örüntü tanıma çerçevesi geliştirilmesi

Yükleniyor...
Küçük Resim

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ege Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Günümüzde dijital görüntülerin sayısı, teknolojik imkânların ve aygıtların kullanılması ile birlikte giderek artış göstermektedir. Görüntü türlerinin bilgisayar destekli sınıflandırılması tıp, güvenlik, otomasyon gibi pek çok uygulama alanında yaygın olarak kullanılmaktadır. Öznitelik çıkarma ve seçimi, örüntü tanıma sürecinin alt aşamaları olarak sınıflandırma başarımını artırmak açısından oldukça önem taşımaktadır. Tez çalışmasında, görüntüler üzerinde öznitelik çıkarma ve seçimi aşamalarının her ikisini de içeren bir örüntü tanıma çerçevesi geliştirilmiştir. Çerçevenin ilk alt modelinde, sadece manuel öznitelik çıkarma yöntemleri kullanılmıştır. Bu modelde, 4 tanesi merkez noktasına göre ikiye ayrılmış görüntülerden türetilen özgün öznitelikler olmak üzere, 194 adet öznitelik çıkarmayı sağlayan geniş bir yöntem kümesi oluşturulması literatüre yapılan katkılardandır. Öznitelik seçimi aşamasında ise genetik algoritmalardan yararlanılmıştır. Literatüre diğer bir katkı olarak geliştirilen ikinci alt modelde ise, derin öğrenme kullanılarak çıkarılan öznitelik kümesi de ilk alt modele eklenerek sistem genişletilmiş ve böylece tanıma performansı artırılmıştır. Tez kapsamında, manuel olarak 194, derin öğrenmeyle 4096 olmak üzere toplamda 4290 öznitelik çıkarmayı sağlayan bir çatı oluşturulmuş, deneysel çalışmalarda Flavia ve Caltech-101 verisetleri kullanılmıştır. Her iki verisetinde en iyi sınıflandırma başarımının ECOC-SVM modeli ile sağlandığı ve literatürdeki en iyi sonuçlara göre karşılaştırılabilir olduğu gösterilmiştir.;Örüntü tanıma, görüntü işleme, öznitelik çıkarma, öznitelik seçimi, makine öğrenmesi, derin öğrenme, veri madenciliği, eniyileme.;Pattern recognition, image processing, feature extraction, feature selection, machine learning, deep learning, data mining, optimization.

Açıklama

Tez (Doktora) -- Ege Üniversitesi, 2018

Anahtar Kelimeler

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye