A short-term photovoltaic output power forecasting based on ensemble algorithms using hyperparameter optimization

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The stochastic and intermittent nature of solar energy presents the power grid with the challenge of providing a stable, secure, and economical power supply, especially in the case of large-scale penetration. The prerequisite for addressing these challenges is accurate power output estimation from PV systems. In addition, accurate power estimation also ensures the correct sizing of PV systems for investors. In this study, the PV output prediction model has been developed based on ensemble algorithms using two years of real power and meteorological data from grid-connected PV systems. Grid search, random search, and Bayesian optimization were used to determine the optimal hyperparameters for ensemble algorithms. The originality of this study is that (i) the use of hyperparameter optimization for ensemble algorithms in predicting PV performance, (ii) the degradation rate of PV panels by ensemble algorithms using the first two years' data, and (iii) the performance comparison of ensemble algorithms using the hyperparameter optimization technique. The accuracy and precision of the prediction model are determined by the relative root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE), mean scaled error (MSE), coefficient of determination (R2), mean absolute percentage error (MAPE), and maximum absolute error (MaxAE). To the best of our knowledge, this is one of the first studies to address the optimization of all hyperparameters to find the best parameters for ensemble algorithms and PV panel degradation rates. The results show that the CatBoost algorithm has better performance than the other algorithms used. The performance metrics of the CatBoost algorithm were determined to be 0.9327 R2, 0.047 MSE, 0.0388 MAE, 0.0003 MBE, 0.069 RMSE, 18.7 MAPE, and 0.79 MaxAE.

Açıklama

Anahtar Kelimeler

Pv Output Power, Forecasting, Degradation Rate, Ensemble Algorithms, Hyperparameter Optimization

Kaynak

Electrical Engineering

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

Sayı

Künye