Yapay sinir ağları kullanılarak retina görüntülerinden hastalık tanılama sistemi tasarımı ve gerçekleştirimi
Yükleniyor...
Dosyalar
Tarih
2010
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tezde, retina görüntülerinde yer alan dört farklı hastalık lezyonunu (sert eksuda, hemoraji, mikro anevrizma ve yumuşak eksuda) otomatik olarak tespit edebilen bir sistem geliştirilmiştir. Görüntü işleme kapsamında çeşitli görüntü iyileştirme, bölge büyütme ve filtreleme yöntemleri kullanılmıştır. Retina görüntülerindeki Optik Disk, Fovea/Makula, Damarlar gibi belirgin oluşumların konumlarının tespiti yapılmıştır. Hastalık lezyonlarına ait öznitelikler ağa girdi olarak verilmeden önce Temel Bileşenler Analizi (PCA)’ne tabi tutulmuş; Mahalanobis uzaklıkları, standart sapma, çarpıklık (skewness), basıklık (kurtosis) katsayıları yanında aykırı değerler de bulunmuş ve bu veriler önceden elenmiştir. Geri yayılım algoritmasını kullanan çok katmanlı algılayıcı yapısındaki ağ, normalleştirilmiş eğitim verileri ile eğitilmiştir. Görüntü İşleme, Yapay Sinir Ağları (MLP, RBF) ve Destek Vektör Makineleri (SVM) ile Tanılama için MatLab, istatistiksel işlemlerde MiniTab yazılımları kullanılmıştır. Uygun yapay sinir ağı eğitim fonksiyonlarının seçimi ve parametrelerinin ayarlanması için de çalışma yapılmıştır. Elde edilen deneysel sonuçlar sunulmuş, MLP, RBF ve SVM sınıflandırıcıları için tanılama performansları karşılaştırılmış ve tartışılmıştır.
Açıklama
Anahtar Kelimeler
Tıbbi Görüntü İşleme, Örüntü Tanıma, Yapay Sinir Ağları, Destek Vektör Makineleri, Sınıflandırma, Kesimleme, Retina., Medical Image Processing, Pattern Recognition, Artificial Neural Networks, Support Vector Machines, Classification, Segmentation, Retina., Bilgisayar Mühendisliği A.B.D.