Homology sequences and theorems in persistence setup
Yükleniyor...
Dosyalar
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege Üniversitesi, Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Topology together with algebra provides a large field, called Algebraic Topology,
where we have numerous tools to examine spaces and classify them. Such tools we
use are homotopy, homology, cohomology and so on. By applying these methods we
derive information about spaces and do our classification with respect to them.
In some cases we may only have limited information about a space, for example a
set of points sampled from it, but we may still want to know how the space actually
looks like or what kind of properties it has such as its connectedness or number of
holes it has etc. Thanks to the persistence approach, we use the tools we mentioned
above to not only compare spaces but also have significant information about a space.
We first build a structure on the limited data we have and apply those usual methods
of algebraic topology.
Throughout this thesis, the tool we shall examine is homology. Homology has
some structures such as the exact sequences and theorems to simplify relatively
complicated calculations. We see how not only the method but also those exact
sequences and theorems based on usual homology are applied to the persistence
approach.
Topoloji, cebirle birleştiğinde, uzayları incelemek ve sınıflandırmak için çok sayıda metoda sahip olduğumuz Cebirsel Topoloji adı verilen geniş bir çalışma alanı oluşturur. Kullandığımız metotlara homotopi, homoloji ve kohomoloji örnekleri verilebilir. Bu metotları kullanarak uzaylar hakkında bilgiler elde eder ve sınıflandırmamızı bunlara göre yaparız. Bazı durumlarda ise, bir uzay hakkında yalnızca sınırlı bilgiye sahip olabiliriz, örneğin bu uzaydan örneklenen bir nokta kümesi gibi, ancak yine de uzayın gerçekte nasıl göründüğünü, bağlantılılığını veya sahip olduğu boşluk sayısı gibi özelliklerini bilmek isteyebiliriz. Persistence yaklaşımı sayesinde yukarıda bahsettiğimiz metotları yalnızca uzayları karşılaştırmak için değil, aynı zamanda bir uzay hakkında önemli bilgilere sahip olmak için de kullanabiliriz. Bunu, öncelikle elimizdeki sınırlı veri üzerinde bir yapı kurarak ve ardından bu yapı üzerinde bilinen cebirsel topoloji metotlarını uygulayarak yaparız. Bu tez çalışmasında inceleyeceğimiz metot homolojidir. Homoloji, nispeten karmaşık hesaplamaları basitleştirebilmek için tam diziler gibi yapılara ve teoremlere sahiptir. Persistence yaklaşımına sadece homoloji metodunun değil, aynı zamanda homolojiye dayanan tam dizilerin ve teoremlerin nasıl uygulandığını inceleyeceğiz.
Topoloji, cebirle birleştiğinde, uzayları incelemek ve sınıflandırmak için çok sayıda metoda sahip olduğumuz Cebirsel Topoloji adı verilen geniş bir çalışma alanı oluşturur. Kullandığımız metotlara homotopi, homoloji ve kohomoloji örnekleri verilebilir. Bu metotları kullanarak uzaylar hakkında bilgiler elde eder ve sınıflandırmamızı bunlara göre yaparız. Bazı durumlarda ise, bir uzay hakkında yalnızca sınırlı bilgiye sahip olabiliriz, örneğin bu uzaydan örneklenen bir nokta kümesi gibi, ancak yine de uzayın gerçekte nasıl göründüğünü, bağlantılılığını veya sahip olduğu boşluk sayısı gibi özelliklerini bilmek isteyebiliriz. Persistence yaklaşımı sayesinde yukarıda bahsettiğimiz metotları yalnızca uzayları karşılaştırmak için değil, aynı zamanda bir uzay hakkında önemli bilgilere sahip olmak için de kullanabiliriz. Bunu, öncelikle elimizdeki sınırlı veri üzerinde bir yapı kurarak ve ardından bu yapı üzerinde bilinen cebirsel topoloji metotlarını uygulayarak yaparız. Bu tez çalışmasında inceleyeceğimiz metot homolojidir. Homoloji, nispeten karmaşık hesaplamaları basitleştirebilmek için tam diziler gibi yapılara ve teoremlere sahiptir. Persistence yaklaşımına sadece homoloji metodunun değil, aynı zamanda homolojiye dayanan tam dizilerin ve teoremlerin nasıl uygulandığını inceleyeceğiz.
Açıklama
Anahtar Kelimeler
Persistent Homology, Barcode, Simplicies, Point Cloud Data, Ppersistent Homoloji, Barkod, Simpleksler, Nokta Bulutu Veri