An Artificial Neural Network-Based Data-Driven Embedded Controller Design for a Pneumatic Artificial Muscle-Actuated Pressing Unit

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Mdpi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Obtaining mathematical models of nonlinear cyber-physical systems for use in controller design is both difficult and time consuming. In this paper, an ANN-based method is proposed to design a controller for a nonlinear system that does not require a mathematical model. The developed ANN-based control algorithm is implemented directly on a real-time field controller, and its performance is evaluated without the use of auxiliary devices, such as PCs or workstations. By executing machine learning algorithms on local devices or embedded systems, edge artificial intelligence (Edge AI) with transfer learning gives priority to processing data at the source, minimizing the necessity for continuous connectivity to remote servers. The control algorithm was developed using the Matlab Simulink environment. The first and second ANNs were cascaded, wherein the first ANN computes the appropriate pressure signal for the given displacement, while the second predicts the force based on the pressure value from the first ANN. Subsequently, the ANN-based control algorithm was converted to SCL code using the Simulink PLC Coder and deployed on the PLC for operation. The algorithm was tested using two different scenarios. The conducted tests demonstrated the successful prediction of pressure signals corresponding to the targeted displacement values and accurate estimation of force values. Experimental work was carried out on PAM manipulators as a nonlinear model application, and the obtained results were discussed.

Açıklama

Anahtar Kelimeler

Pneumatic Artificial Muscle, Nonlinear Systems, Artificial Neural Network, Edge Artificial Intelligence, Programmable Logic Controller

Kaynak

Applied Sciences-Basel

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

14

Sayı

11

Künye