Some Tauberian theorems for iterations of Hölder integrability method

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Birkhauser Verlag AG

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Let f be a real or complex-valued function on [1 , ?) which is continuous over every finite interval [1, x) for 1 < x< ?. We set s(x):=?1xf(t)dt and define ? k (s(x)) by ?k(s(x))={1x?1x?k-1(s(t))dt,k?1s(x),k=0for each nonnegative integer k. An improper integral ?1?f(x)dxis said to be integrable to a finite number µ by the k-th iteration of Hölder or Cesàro mean method of order one, or for short, the (H, k) integrable to µ if limx›??k(s(x))=µ.In this case, we write s(x)›µ(H,k). It is clear that the (H, k) integrability method reduces to the ordinary convergence for k= 0 and the (H, 1) integrability method is (C, 1) integrability method. It is known that lim x › ? s(x) = µ implies lim x › ? ? k (s(x) ) = µ. But the converse of this implication is not true in general. In this paper, we obtain some Tauberian conditions for the iterations of Hölder integrability method under which the converse implication holds. © 2019, Springer Nature Switzerland AG.

Açıklama

Anahtar Kelimeler

(H, k) integrability, Divergent integrals, Slowly decreasing functions, Slowly oscillating functions, Tauberian theorems

Kaynak

Positivity

WoS Q Değeri

Scopus Q Değeri

Q2

Cilt

Sayı

Künye