INDEPENDENCE OF COUNTABLE SETS OF FORMULAS OF THE PROPOSITIONAL LOGIC
Küçük Resim Yok
Tarih
2013
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Charles Babbage Res Ctr
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we prove that every countable set of formulas of the propositional logic has at least one equivalent independent subset. We illustrate the situation by considering axioms for Boolean algebras; the proof of independence we give uses model forming.
Açıklama
Anahtar Kelimeler
classical logic, independence, consistence, axiomatizability, completeness
Kaynak
Ars Combinatoria
WoS Q Değeri
Q4
Scopus Q Değeri
Cilt
112