Dielektrik bariyer deşarj paralel plaka yöntemi ile soğuk plazma üretimi ve optimizasyonu
Küçük Resim Yok
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tez çalışmasında, soğuk plazma üretimi için kullanılan yöntemlerden biri olan dielektrik bariyer deşarj (DBD) paralel plaka yöntemi ile atmosferik basınç ve oda sıcaklığında hava soğuk plazması üretilmiştir. Soğuk plazmaların güç değerleri plazma üretimini etkileyen faktörlerden ölçülen veriler ile hesaplanmış, bu faktörlerin elektron yoğunluğu üzerindeki etkileri incelenmiş ve analiz edilmiştir. DBD hava soğuk plazması üretiminde elektrotlar arasında dielektrik malzeme olarak 0.001 m, 0.002 m, 0.003 m ve 0.004 m kalınlıklarda cam ve pleksiglas kullanılmıştır. Metal elektrotlar 0.002 m kalınlıktaki alüminyum levhadan daire, dikdörtgen, kare ve oval geometrilerde yüzey alanları sırasıyla 0.000314 m2, 0.000400 m2, 0.000800 m2 ve 0.001114 m2 olacak şekilde imal edilmiştir. Tasarlanan mekanik reaktörde 0.001 m' lik adımlarla 0.001 m ile 0.011 m hava aralıklarında plazma oluşturulmuştur. Elektrotlara yüksek gerilim transformatörleri ile 400-1500 Hz aralığında 14.6890 kVrms (20.7765 kVpp)'a kadar gerilim uygulanarak soğuk plazma elde edilmiştir. Plazma gücü ölçüm kapasitörü yöntemi ve Lissajous yöntemi ile hesaplanmıştır. Hava soğuk plazmasının elektron yoğunluğu güç dengesi yöntemi ile hesaplanmıştır. Hava soğuk plazmasının elektron yoğunluğu 1.7059E+15 m-3 ile 1.6313E+18 m-3 arasında hesaplanmıştır. Geniş bir kullanım alanına sahip olan soğuk plazmaların, plazma üretimine etki eden faktörlerin etkileri dikkate alınarak daha etkin kullanılmasının sağlanması ve plazma faktörlerinin optimizasyonu ile plazma veriminin artırılması amaçlanmıştır.
In this thesis, air cold plasma was produced at atmospheric pressure and room temperature by dielectric barrier discharge (DBD) parallel plate method, which is one of the methods used for cold plasma production. The power values of the cold plasmas were calculated with the measured data from the factors affecting the plasma production, the effects of these factors on the electron density were examined and analyzed. For the production of DBD air cold plasma, glass and plexiglass with thicknesses of 0.001 m, 0.002 m, 0.003 m and 0.004 m were used as dielectric material between the electrodes. Metal electrodes were manufactured from 0.002 m thick aluminum sheet in circle, rectangular, square and oval geometries with surface areas of 0.000314 m2, 0.000400 m2, 0.000800 m2 and 0.001114 m2, respectively. In the designed mechanical reactor, plasma was formed at 0.001 m to 0.011 m air gaps in 0.001 m steps. Cold plasma was obtained by applying voltages up to 14.6890 kVrms (20.7765 kVpp) in the 400-1500 Hz range with high voltage transformers to the electrodes. The plasma power was calculated by the measuring capacitor method and the Lissajous method. The electron density of the air cold plasma was calculated by the power balance method. The electron density of the air cold plasma was calculated between 1.7059E+15 m-3 and 1.6313E+18 m-3. It is aimed to ensure that cold plasmas, which have a wide usage area, are used more effectively by taking into account the effects of factors affecting plasma production and to increase plasma efficiency by optimizing plasma factors.
In this thesis, air cold plasma was produced at atmospheric pressure and room temperature by dielectric barrier discharge (DBD) parallel plate method, which is one of the methods used for cold plasma production. The power values of the cold plasmas were calculated with the measured data from the factors affecting the plasma production, the effects of these factors on the electron density were examined and analyzed. For the production of DBD air cold plasma, glass and plexiglass with thicknesses of 0.001 m, 0.002 m, 0.003 m and 0.004 m were used as dielectric material between the electrodes. Metal electrodes were manufactured from 0.002 m thick aluminum sheet in circle, rectangular, square and oval geometries with surface areas of 0.000314 m2, 0.000400 m2, 0.000800 m2 and 0.001114 m2, respectively. In the designed mechanical reactor, plasma was formed at 0.001 m to 0.011 m air gaps in 0.001 m steps. Cold plasma was obtained by applying voltages up to 14.6890 kVrms (20.7765 kVpp) in the 400-1500 Hz range with high voltage transformers to the electrodes. The plasma power was calculated by the measuring capacitor method and the Lissajous method. The electron density of the air cold plasma was calculated by the power balance method. The electron density of the air cold plasma was calculated between 1.7059E+15 m-3 and 1.6313E+18 m-3. It is aimed to ensure that cold plasmas, which have a wide usage area, are used more effectively by taking into account the effects of factors affecting plasma production and to increase plasma efficiency by optimizing plasma factors.
Açıklama
Anahtar Kelimeler
Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering