Çok boyutlu veritabanlarında kümeleme yöntemleri üzerine
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Veri madenciliği yöntemlerinden biri olan Kümeleme Analizi, verilerin özelliklerini gözönüne alarak, birbirleri ile benzer olan verileri alt kümelere ayırmayı sağlayan çok boyutlu veri analiz yöntemidir. Kümeleme analizinin bir diğer tanımı da şu şekilde verilebilir: Özellikler arası benzerlik ya da farklılıklara dayalı olarak hesaplanan bazı ölçülerden yararlanarak verileri homojen gruplara bölmek, belirli prototipler tanımlamaktır. Kümeleme yöntemleri hiyerarşik ve hiyerarşik olmayan yöntemler olarak iki sınıfa ayrılır. Hiyerarşik kümelemede veri noktaları belirli bölümleme düzeylerinde birleştirilir veya ayrıştırılır. Hiyerarşik olmayan kümeleme yaklaşımında ise, veri noktaları belirli bölümleme kriterlerine göre belirli sayıda kümelere ayrılır. Bu tezde, hiyerarşik olmayan kümeleme yaklaşımına dayanan, veri setindeki veri grupları arasında kesin ayrımın söz konusu olduğu, kesin kümeleme algoritmalarından olan artımlı algoritmalar incelenmiştir. Kesin kümeleme içerisinde yer alan artımlı algoritmalar, veri setindeki veri grupları arasında kesin ayrımın söz konusu olmadığı, bir verinin belirli bir üyelik derecesiyle birden fazla kümeye ait olabildiği bulanık kümeleme yöntemleri ile beraber ele alınıp, bulanık kümeleme problemleri için yeni bir algoritma önerilmiştir. Önerilen artımlı yöntem C# dilinde MS SQL Server Veri Tabanı Yönetim Sistemi imkanları kullanılarak programlanıp, 12 gerçek veri seti üzerinde hesaplama denemeleri yapılmıştır. Önerilen algoritma Bulanık c-Ortalamalar algoritması ile kıyaslandığında yöntemin yararlılığı açıkça görülmektedir.