Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods
Küçük Resim Yok
Tarih
2005
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Oxford Univ Press
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Motivation: A serious limitation in microarray analysis is the unreliability of the data generated from low signal intensities. Such data may produce erroneous gene expression ratios and cause unnecessary validation or post-analysis follow-up tasks. Therefore, the elimination of unreliable signal intensities will enhance reproducibility and reliability of gene expression ratios produced from microarray data. In this study, we applied fuzzy c-means (FCM) and normal mixture modeling (NMM) based classification methods to separate microarray data into reliable and unreliable signal intensity populations. Results: We compared the results of FCM classification with those of classification based on NMM. Both approaches were validated against reference sets of biological data consisting of only true positives and true negatives. We observed that both methods performed equally well in terms of sensitivity and specificity. Although a comparison of the computation times indicated that the fuzzy approach is computationally more efficient, other considerations support the use of NMM for the reliability analysis of microarray data.
Açıklama
Anahtar Kelimeler
Kaynak
Bioinformatics
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
21
Sayı
5