Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods

Küçük Resim Yok

Tarih

2005

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Oxford Univ Press

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Motivation: A serious limitation in microarray analysis is the unreliability of the data generated from low signal intensities. Such data may produce erroneous gene expression ratios and cause unnecessary validation or post-analysis follow-up tasks. Therefore, the elimination of unreliable signal intensities will enhance reproducibility and reliability of gene expression ratios produced from microarray data. In this study, we applied fuzzy c-means (FCM) and normal mixture modeling (NMM) based classification methods to separate microarray data into reliable and unreliable signal intensity populations. Results: We compared the results of FCM classification with those of classification based on NMM. Both approaches were validated against reference sets of biological data consisting of only true positives and true negatives. We observed that both methods performed equally well in terms of sensitivity and specificity. Although a comparison of the computation times indicated that the fuzzy approach is computationally more efficient, other considerations support the use of NMM for the reliability analysis of microarray data.

Açıklama

Anahtar Kelimeler

Kaynak

Bioinformatics

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

21

Sayı

5

Künye