Effects of the plant-growth-promoting rhizobacteria (PGPRs) on expression of salt stress related genes in tomato plants under drought stress conditions
Küçük Resim Yok
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
İklim değişikliği, açlık ve gıda güvencesizliği, tarım sektörünün bugün karşı karşıya olduğu sorunlar arasındadır. Domates bitkileri, çiçeklenme ve tohum geliştirme kritik aşamalarında kuraklık stresine duyarlıdır ve artan karbon seviyeleri de verim kaybına neden olmaktadır. Kuraklık sonucunda domates üretkenliğinde azalma, hastalıklarda artış ve meyve kalitesinde düşüş yaşanacaktır. Bu nedenle, ortaya çıkan biyoteknolojik müdahaleler bitki verimini ve stres toleransını artırmaya odaklanmalıdır. NAC ve NHX genlerinin önemi ve abiyotik stres direncini artırmada bitki büyümesini teşvik eden rizobakteri (PGPR) faydaları yaygın olarak bilinmektedir. Bu çalışmanın konusu, bir bakteri suşu (113-Bacillusis megaterium) varlığında Solanum lycopersicum'da kuraklık stres toleransının kontrolünde bir grup SINAC ve SINHX geninin potansiyelidir. Bu çalışmada, 46 SINAC geni ve 4 SINHX geninin ifade seviyesi gerçek zamanlı PCR tekniği kullanılarak değerlendirildi. Genel olarak, hem kök hem de yaprak dokularında çalışılan tüm genlerde, kontrol örneğine göre farklı seviyelerde ve kuraklık stres zamanlarında SINAC ve SINHX ifadesi artmıştır. Ayrıca, B. megaterium'un yaprak dokusuna aşılama, kontrol örneklerine göre her iki genin göreceli ifadesinde bir artışa neden olmuştur ve yalnızca kuraklık stresine maruz kalan örneklerle de karşılaştırıldığında. Sonuçlar, bahsedilen genlerin transkript birikiminin farklı kuraklık stres seviyeleri altında düzenlendiğini gösterdi. Doğal olarak dayanıklı aday SINAC ve SINHX genleri keşfedildiğinde ve kuraklık stresi ile korelasyonları bilindiğinde, transgenik teknoloji gelecekteki mahsullerde doğal direnç oluşturmak için kullanılabilir.
Climate change, hunger, and food insecurity are among the issues that the agriculture sector is dealing with today. During the critical stages of flowering and seed development, tomato plants are vulnerable to drought stress, and elevated carbon levels also result in yield losses. A decline in tomato productivity, an increase in disease, and a fall in fruit quality will all result from the drought. As a result, emerging biotechnological interventions should focus on enhancing plant yield and stress tolerance. The importance of NAC and NHX genes and the benefits of plant growth–promoting rhizobacteria (PGPR) in improving abiotic stress resistance is widely understood. The potential of a group of SINAC and SINHX genes in the control of drought stress tolerance in the presence of a bacterial strain (113-Bacillusis megaterium) in Solanum lycopersicum is the subject of the present study. In this study, the expression level of 46 SINAC genes and 4 SINHX genes was assessed using the real-time PCR technique. In general, in all the studied genes, SINAC and SINHX in both root and leaf tissues, expression increased at different levels and times of drought stress compared to the control sample. Also, the inoculation of B. megaterium in the leaf tissue has caused an increase in the relative expression of both genes compared to the control samples and also compared to the samples that were only exposed to drought stress. The results indicated that the transcript accumulation of mentioned genes has been regulated under different levels of drought stress. Once naturally tolerant candidate SINAC and SINHX genes have been discovered and the nature of their correlation with drought stress has been known, transgenic technology can be used to build inherent tolerance in future crops.
Climate change, hunger, and food insecurity are among the issues that the agriculture sector is dealing with today. During the critical stages of flowering and seed development, tomato plants are vulnerable to drought stress, and elevated carbon levels also result in yield losses. A decline in tomato productivity, an increase in disease, and a fall in fruit quality will all result from the drought. As a result, emerging biotechnological interventions should focus on enhancing plant yield and stress tolerance. The importance of NAC and NHX genes and the benefits of plant growth–promoting rhizobacteria (PGPR) in improving abiotic stress resistance is widely understood. The potential of a group of SINAC and SINHX genes in the control of drought stress tolerance in the presence of a bacterial strain (113-Bacillusis megaterium) in Solanum lycopersicum is the subject of the present study. In this study, the expression level of 46 SINAC genes and 4 SINHX genes was assessed using the real-time PCR technique. In general, in all the studied genes, SINAC and SINHX in both root and leaf tissues, expression increased at different levels and times of drought stress compared to the control sample. Also, the inoculation of B. megaterium in the leaf tissue has caused an increase in the relative expression of both genes compared to the control samples and also compared to the samples that were only exposed to drought stress. The results indicated that the transcript accumulation of mentioned genes has been regulated under different levels of drought stress. Once naturally tolerant candidate SINAC and SINHX genes have been discovered and the nature of their correlation with drought stress has been known, transgenic technology can be used to build inherent tolerance in future crops.
Açıklama
Anahtar Kelimeler
Biyoloji, Biology ; Ziraat