Mycotoxins aptasensing: From molecular docking to electrochemical detection of deoxynivalenol

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Sa

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This work proposes a voltammetric aptasensor to detect deoxynivalenol (DON) mycotoxin. The development steps of the aptasensor were partnered for the first time to a computational study to gain insights onto the molecular mechanisms involved into the interaction between a thiol-tethered DNA aptamer (80mer-SH) and DON. The exploited docking study allowed to find the binding region of the oligonucleotide sequence and to determine DON preferred orientation. A biotinylated oligonucleotide sequence (20mer-BIO) complementary to the aptamer was chosen to carry out a competitive format. Graphite screen-printed electrodes (GSPEs) were electrochemically modified with polyaniline and gold nanoparticles (AuNPs@PANI) by means of cyclic voltammetry (CV) and worked as a scaffold for the immobilization of the DNA aptamer. Solutions containing increasing concentrations of DON and a fixed amount of 20mer-BIO were dropped onto the aptasensor surface: the resulting hybrids were labeled with an alkaline phosphatase (ALP) conjugate to hydrolyze 1-naphthyl phosphate (1-NPP) substrate into 1-naphthol product, detected by differential pulse voltammetry (DPV). According to its competitive format, the aptasensor response was signal-off in the range 5.0-30.0 ng.mL(-1) DON. A detection limit of 3.2 ng.mL(-1) was achieved within a 1-hour detection time. Preliminary experiments on maize flour samples spiked with DON yielded good recovery values. (C) 2020 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Aptasensor, Deoxynivalenol, Molecular docking, Screen-printed electrodes, Mycotoxin, Ultrasensitive Detection, Rapid Detection, Aflatoxin B-1, Web Server, Sensors, Immunosensor

Kaynak

Bioelectrochemistry

WoS Q Değeri

Q1

Scopus Q Değeri

Cilt

138

Sayı

Künye