Effects of Process Conditions on Drying of Tomato Pomace in a Novel Daylight Simulated Photovoltaic-Assisted Drying System

dc.authoridICIER, Filiz/0000-0002-9555-3390
dc.contributor.authorBayana, Damla
dc.contributor.authorIcier, Filiz
dc.date.accessioned2024-08-31T07:50:02Z
dc.date.available2024-08-31T07:50:02Z
dc.date.issued2024
dc.departmentEge Üniversitesien_US
dc.description.abstractThe tomato pomace (TP), which is a by-product of the production of tomato paste, was dried in a novel custom-designed daylight simulated photovoltaic assisted dryer (DPVD). The different light applications (daylight, UV light, daylight + UV light, and without light), different air velocities (1.5 and 2 m/s), and different heating source modes (hot air and infrared) were applied to dry TP having a moisture content of 80.60 +/- 0.73% to the moisture content of 7.66 +/- 1.72%. The average water activity values of all dried samples were measured as 0.52 +/- 0.08. Analysis was conducted to compare sun drying with the effects of process conditions on the quality (color properties, lycopene, beta-carotene, and total mesophilic aerobic bacteria count) and performance (energy efficiency, exergy efficiency, specific moisture evaporation rate, and improvement potential) characteristics of TP. The effects of process conditions for each heating source mode were determined separately, and the improvement of the system performance for each mode was investigated. The effect of the process conditions on total aerobic mesophilic bacteria (TAMB) count was similar in general. In the infrared heating mode, the loss in lycopene and beta-carotene contents was 59.55 +/- 2.22 and 57.87 +/- 2.51 minimum for 1.5 m/s air velocity without light application and for 2 m/s with ultraviolet + daylight application. In general, the performance of the system decreased in case of using ultraviolet light. The retention in the lycopene and beta-carotene contents was higher in the infrared mode with light applications compared to hot air mode without light. The optimum drying conditions were air velocity of 2 m/s with daylight assistance in the hot air heating mode and with ultraviolet + daylight assistance in the infrared heating mode. All the energy and the daylight source used in drying applications were obtained from the sun, a renewable energy source, thanks to the photovoltaic panel and the solar tube units in the novel custom-designed drying system.en_US
dc.description.sponsorshipTrkiye Bilimsel ve Teknolojik Arascedil;timath;rma Kurumuen_US
dc.description.sponsorshipNo Statement Availableen_US
dc.identifier.doi10.1007/s11947-024-03411-2
dc.identifier.issn1935-5130
dc.identifier.issn1935-5149
dc.identifier.scopus2-s2.0-85192578453en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1007/s11947-024-03411-2
dc.identifier.urihttps://hdl.handle.net/11454/105090
dc.identifier.wosWOS:001221035200001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofFood and Bioprocess Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmz20240831_Uen_US
dc.subjectPhotovoltaicen_US
dc.subjectDryingen_US
dc.subjectUltravioleten_US
dc.subjectInfrareden_US
dc.subjectEnergyen_US
dc.subjectExergyen_US
dc.titleEffects of Process Conditions on Drying of Tomato Pomace in a Novel Daylight Simulated Photovoltaic-Assisted Drying Systemen_US
dc.typeArticleen_US

Dosyalar