P-laplacian operatörlü karışık türev içeren kesirli sınır değer probleminin pozitif çözümleri
Yükleniyor...
Dosyalar
Tarih
2020
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege Üniversitesi, Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tez çalışması giriş bölümü dışında üç bölümden oluşmaktadır. İkinci bölümde, tez çalışmasında kullanılacak olan temel tanımlara ve teoremlere yer verilmiştir. Üçüncü bölümde, p-Laplacian operatörlü karışık türev içeren kesirli sınır değer probleminin çözümü incelenmiş ve Avery-Peterson sabit nokta teoremi kullanılarak en az üç pozitif çözümün var olduğu ispatlanmıştır. Son bölümde ise bu çalışmalar doğrultusunda elde edilen bilgilerin sonucuna yer verilmiştir.
Without the introduction, the thesis comprises of three chapters. In the second chapter, basic notions which will be used in the thesis are given. In the third chapter, solutions of p-Laplacian mixed derivative fractional boundary value problem are demonstrated and by using Avery-Peterson fixed point theorem, existence of problem at least three positive solutions are proved. In the last chapter, the results obtained from these studies are given.
Without the introduction, the thesis comprises of three chapters. In the second chapter, basic notions which will be used in the thesis are given. In the third chapter, solutions of p-Laplacian mixed derivative fractional boundary value problem are demonstrated and by using Avery-Peterson fixed point theorem, existence of problem at least three positive solutions are proved. In the last chapter, the results obtained from these studies are given.
Açıklama
Anahtar Kelimeler
Caputo Kesirli Türev, Riemann-Liouville Kesirli Türev, Pozitif Çözümler, P-Laplacian, Avery-Peterson Sabit Nokta Teoremi, Caputo Fractional Derivative, Riemann-Liouville Fractional Derivative, Positive Solutions, P-Laplacian, Avery-Peterson Fixed Point Theorem