A Graph-Based Ontology Matching Framework

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Ontologies are domain-specific metadata that describe relationships between a specific field's properties, sample data of this field, and properties developed for many different purposes. Also, ontologies can be defined by other names within the same domain. Ontology matching algorithms eliminate definition differences and find similarities between existing ontologies. Ontology matching algorithms are used especially for information management, data integration, information extraction, etc. In this study, a graph-based framework is proposed to match large ontologies. This framework is aimed to divide the large ontologies into small pieces and then matches them using sub-graph mining algorithms. Karger algorithm and CP (clique percolation and nearest neighbor) algorithm are used to divide large ontologies. Both algorithms were applied to ontologies for the first time. In the next step, these obtained sub-parts are matched by using sub-graph mining algorithms. GraMi and gSpan algorithms were selected and were used for the first time in the field of ontology matching. We validated our framework using Anatomy and Conference data sets. Also, the proposed framework is compared with widely used in the literature AML and Falcon-AO matching algorithms. According to obtained the results, it is seen that GraMi is better than matching algorithms.

Açıklama

Anahtar Kelimeler

Ontology alignment, Ontology matching, Graph algorithms, Graph theory, Graph mining, Alignment

Kaynak

New Generation Computing

WoS Q Değeri

Q2

Scopus Q Değeri

Q3

Cilt

Sayı

Künye