Alt konka vasküler yapılarının topografik histolojisi: Kadavra çalışması
Yükleniyor...
Dosyalar
Tarih
2016
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege Üniversitesi, Tıp Fakültesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
GIRIŞ VE AMAÇ: Nazal fizyolojide önemli bir rol oynayan ve tüm solunum yollarının en dar kısmı olan nazal valvin dinamik bir elemanı olan alt konkaya ait patolojiler burun tıkanıklığının önde gelen nedenlerini oluşturmaktadırlar. Burun boşluğunun lateral duvarında yer alan bu erektil yapıların histolojisi, anatomik varyasyonları, glanduler paterni ve damarlanması birçok bilimsel araştırmaya konu olmuştur. Erektil yapıların ve konka kanlanmasının değerlendirildiği bu çalışmalarda alt konka başından itibaren posteriora doğru kanlanmanın arttığı gösterilmiştir. Ancak çalışmaların çoğunda konka cerrahisi sonrası elde edilen materyallerin değerlendirilmesine ait veriler bulunmaktadır. Çalışmamızın ana amacı alt konkanın bir bütün olarak ele alınarak önden arkaya doğru vasküler yapılarının histolojik olarak incelenmesi ve varsa bölgesel farklılıklarının tespit edilmesidir. GEREÇ VE YÖNTEM: Ege Üniversitesi Anatomi Anabilim Dalı'ndan temin edilen 8 adet taze donmuş kadavranın alt konkaları rezeke edildikten sonra, histolojik preparasyona uygun olan 13 adet konka, 7 sağ ve 6 sol alt konka olmak üzere iki gruba ayrılmıştır. Alt konkalar asit ve alkol ile prepare edildikten sonra parafın bloklara yatırılmıştır. Her konka önden arkaya doğru ön, orta ve arka 1/3'ü olmak üzere 3 ana parçaya ayırıldıktan sonra 0,5 micron'luk seri kesitler alınmıştır. Toplamda tek konka için 30 kesit olmak üzere her 1/3'lük kısımdan ayrı olarak randomize 10 kesit elde edildikten sonra bu kesitler Hematoksilen&Eozin, Masson Trichrome ve PAS ile boyanmıştır. Işık mikroskobunda büyük büyütmede arter ve ven yapıları sayılarak ön, orta ve arka gruptakiler kendi aralarında toplanmış ve SPSS 21 programında One Way ANOVA testi uygulanmıştır. Ayrıca kemiğin laterali ve mediali için ayrı 2 grup oluşturularak buradaki arter ve yen sayıları tüm kesitlerde sayılarak toplanmıştır. Ek olarak arter çapları ölçülerek ön, orta ve arka olmak üzere gruplara ayrılıp ortalamaları hesaplanarak SPSS 21 programında One Way ANOVA ile istatistiksel analiz uygulanmıştır. BULGULAR: Ön 1/3'te arter kesitleri için ortalama değer 33,25 (Min: 9, Max: 105; SD:33,24; IR: 41), yen kesitleri için ortalama değer 308 (Min: 124; Max: 674; SD: 181,347; IR: 255) idi. Orta 1/3'te arter kesitleri için ortalama değer 56,13 (Min: 16, Max: 158; SD:52,179; IR: 79), yen kesitleri için ortalama değer 663,63 (Min: 179; Max: 1906; SD: 584,502; IR: 702) idi. Arka 1/3'te arter kesitleri için ortalama değer 35,63 (Min: 1, Max: 88; SD:27,045; IR: 37), ven kesitleri için ortalama değer 445,88 (Min: 88; Max: 819; SD: 269,683; IR: 546) idi. One way ANOVA ile yapılan istatistiksel analiz sonucu olarak sırasıyla ön, orta ve arka 1/3'lük kısımlarda venöz yapılar için bölgeler arasındaki farklılık p>0,05 (=0,202) ve arteriyel yapılar için p>0,05 (=0,449) olarak hesaplandı. TARTIŞMA VE SONUÇ: Nazal fizyolojide temel taşlardan biri olan alt konkaya yönelik araştırmalar 1940'lı yıllara kadar dayanmaktadır. Bu erektil yapının işlevini nasıl gerçekleştirdiğine dair yapılan çalışmalar, özellikle glanduler epitel ve vasküler yapılar üzerinde yoğunlaşmıştır. Bu anatomik çalışmalarda vaskülaritenin posteriora doğru belirginleştiği, alt konka kuyruğunda vaskülaritenin en fazla olduğu vurgulanmıştır. Ancak 2004 yılında Philpott ve arkadaşlarının yaptığı çalışmada endoskopik sinüs cerrahisi uygulanan hastalardan bölgesel olarak alınan doku biyopsilerinde CD34 immünohistokimyasal olarak çalışılmış ve mikrovasküler yapılarda bölgesel olarak bir farklılık saptanmamıştır. Bizim çalışmamızda randomize biyopsiler ile değil; konkanın tamamından elde edilen tam kat seri kesitlerde arter ve ven yapıları ayrı ayrı ışık mikroskopisinde değerlendirilerek ön, orta ve arka gruplar ve kemiğin laterali ve medialinde vasküler yapı açısından fark olup olmadığı karşılaştırılmıştır. Yapılan analiz sonucu alt konka vasküler yapılarının dağılımı ön, orta ya da arka kısımda istatistiksel olarak anlamlı farklılık göstermediği bulunmuştur. Burun tıkanıklığının önde gelen nedenlerinden olan alt konka hipertrofılerinde uygulanan cerrahi tekniklerde daha önce bilinenin aksine, konkada vaskülaritenin konka başı, orta kısmı ve kuyruğunda farklı olmamasından dolayı, bu cerrahilerde en sık karşılaşılan komplikasyon olan kanamanın konkanın hangi kısmına müdahale edilirse edilsin ortaya çıkabileceği düşünülebilir. Ancak daha fazla konkanın dahil edildiği, yüzey alanı ve damar çapının hesaplanarak yapıldığı çalışmalar ile vasküler patern daha detaylı incelenebilir ve ileride yapılacak cerrahi girişimlerde yol gösterici olabilir.
BACKGROUND: The inferior turbinate which plays an important role in nazal physiology and it consists dynamic component of the nazal valve that is the narrowest part of the upper aerodigestive tract, and its pathologies are the common cause of the nazal obstruction. The histology, anatomical variations, glandular pattern and vascularity of these erectile structures on the lateral wall of the nazal cavity had been the subject of many investigations. In these studies, in which erectile structures and vascularity were evaluated, it was shown that blood flow in the posterior one-third of the turbinate increased. Majority of these datas are obtained from the evaluation of the materials which was gathered from nazal surgeries. The aim of this study is to evaluate the whole turbinate in the terms of the vascular structures histologically from the anterior to posterior and to determine regional differences, if any. MATERIALS AND METHODS: 13 inferior turbinates those were resected from 8 fresh frozen cadavers which gathered from Ege University Anatomy Department. Inferior turbinates are included those are suitable for histological preparation. Turbinates were separated into two groups; 7 right and 8 left turbinate. The resected turbinates are prepareted acid and alcohol and than were embedded in paraffin blocks. Each turbinate was divided into 3 main parts, anterior to posterior, 0.5 micron serial sections were evaluated. 10 sections were obtained from each one third of the turbinate, anterior, posterior and middle of the turbinate, and 30 sections in total were evaluated and these were stained with Hematoxylin & Eozin, Masson Trichrome and PAS. On the light microscope, large and enlarged arteries and veins were counted and the anterior, middle and posterior groups were collected. One way ANOVA test was applied in SPSS 21 software. In addition, two separate groups were created for the lateral and medial sides of the bone, and the arterial and venous structures were counted in all sections. Diameters of arteries were measured and the mean diameter in the each turbinate section were calculated by x10 magnification. RESULTS: In the anterior 1/3, the mean value for arterial sections was 33.25 (Min: 9, Max: 105, SD: 33.24, IR: 41), the mean value for venous sections were 308 (Min: 124; Max: 674; SD: 181,347; IR: 255). in the middle 1/3, mean values for arterial sections were 56,13 (Min: 16, Max: 158, SD: 52,179, IR: 79), mean values for the venous sections were 663,63 (Min: 179, Max: 1906; SD: 584,502; IR: 702). In the posterior 1/3, mean values for arterial sections were 35.63 (Min: 1, Max: 88, SD: 27.045, IR: 37), mean values for venous sections were 445.88 (Min: 88, Max: 819, SD : 269,683; IR: 546). Statistical analysis with one way ANOVA showed that the difference between the regions for venous structures in the anterior, middle and posterior 1/3 regions was p> 0.05 (= 0.202) and for arterial structures was p> 0.05 (= 0.449) DISCUSSION: Since 1940s, researches about the inferior turbinate, which is one of the corner stone in nazal physiology, still continue. Particularly, studies on how this erectile structure performs its function have been focused on glandular epithelium and vascular structures. In these anatomical studies, it was emphasized that vascularisation of posterior one-third is much more than anterior part of the turbinate and vascularisation is the most pronounced within the tail of the turbinate. However, in 2004, Philpott et al. conducted a CD34 immunohistochemistry study on tissue biopsies that different regions of the nazal cavity were taken from patients who underwent endoscopic sinus surgery. In this study, regional differences in microvascular structures was not seen. In our study, in the full-layer serial sections obtained from the whole turbinate, the arterial and venous structures were evaluated by light microscopy and it was compared whether there was any difference in the vascular structure in the anterior, middle and posterior groups. There has not been found any statistical differences between the distribution of the vascular structures of the inferior turbinate in the anterior, middle or posterior part. Unlike what is known about turbinate surgery complications, according to our study, it can be considered that bleeding can occur whichever part of the turbinate is operated. Further studies including surface area and vessel diameters are needed to evaluate the vascular pattern and to guide future surgical procedures, however.
BACKGROUND: The inferior turbinate which plays an important role in nazal physiology and it consists dynamic component of the nazal valve that is the narrowest part of the upper aerodigestive tract, and its pathologies are the common cause of the nazal obstruction. The histology, anatomical variations, glandular pattern and vascularity of these erectile structures on the lateral wall of the nazal cavity had been the subject of many investigations. In these studies, in which erectile structures and vascularity were evaluated, it was shown that blood flow in the posterior one-third of the turbinate increased. Majority of these datas are obtained from the evaluation of the materials which was gathered from nazal surgeries. The aim of this study is to evaluate the whole turbinate in the terms of the vascular structures histologically from the anterior to posterior and to determine regional differences, if any. MATERIALS AND METHODS: 13 inferior turbinates those were resected from 8 fresh frozen cadavers which gathered from Ege University Anatomy Department. Inferior turbinates are included those are suitable for histological preparation. Turbinates were separated into two groups; 7 right and 8 left turbinate. The resected turbinates are prepareted acid and alcohol and than were embedded in paraffin blocks. Each turbinate was divided into 3 main parts, anterior to posterior, 0.5 micron serial sections were evaluated. 10 sections were obtained from each one third of the turbinate, anterior, posterior and middle of the turbinate, and 30 sections in total were evaluated and these were stained with Hematoxylin & Eozin, Masson Trichrome and PAS. On the light microscope, large and enlarged arteries and veins were counted and the anterior, middle and posterior groups were collected. One way ANOVA test was applied in SPSS 21 software. In addition, two separate groups were created for the lateral and medial sides of the bone, and the arterial and venous structures were counted in all sections. Diameters of arteries were measured and the mean diameter in the each turbinate section were calculated by x10 magnification. RESULTS: In the anterior 1/3, the mean value for arterial sections was 33.25 (Min: 9, Max: 105, SD: 33.24, IR: 41), the mean value for venous sections were 308 (Min: 124; Max: 674; SD: 181,347; IR: 255). in the middle 1/3, mean values for arterial sections were 56,13 (Min: 16, Max: 158, SD: 52,179, IR: 79), mean values for the venous sections were 663,63 (Min: 179, Max: 1906; SD: 584,502; IR: 702). In the posterior 1/3, mean values for arterial sections were 35.63 (Min: 1, Max: 88, SD: 27.045, IR: 37), mean values for venous sections were 445.88 (Min: 88, Max: 819, SD : 269,683; IR: 546). Statistical analysis with one way ANOVA showed that the difference between the regions for venous structures in the anterior, middle and posterior 1/3 regions was p> 0.05 (= 0.202) and for arterial structures was p> 0.05 (= 0.449) DISCUSSION: Since 1940s, researches about the inferior turbinate, which is one of the corner stone in nazal physiology, still continue. Particularly, studies on how this erectile structure performs its function have been focused on glandular epithelium and vascular structures. In these anatomical studies, it was emphasized that vascularisation of posterior one-third is much more than anterior part of the turbinate and vascularisation is the most pronounced within the tail of the turbinate. However, in 2004, Philpott et al. conducted a CD34 immunohistochemistry study on tissue biopsies that different regions of the nazal cavity were taken from patients who underwent endoscopic sinus surgery. In this study, regional differences in microvascular structures was not seen. In our study, in the full-layer serial sections obtained from the whole turbinate, the arterial and venous structures were evaluated by light microscopy and it was compared whether there was any difference in the vascular structure in the anterior, middle and posterior groups. There has not been found any statistical differences between the distribution of the vascular structures of the inferior turbinate in the anterior, middle or posterior part. Unlike what is known about turbinate surgery complications, according to our study, it can be considered that bleeding can occur whichever part of the turbinate is operated. Further studies including surface area and vessel diameters are needed to evaluate the vascular pattern and to guide future surgical procedures, however.