Yüksek mertebeden çok noktalı kesirli sınır değer probleminin çözümlerinin varlığı üzerine

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ege Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Bu tez çalışmasında dört kısım yer almaktadır. İlk kısım genel olarak tezde ele alınan konu ve bu konu ile ilgili yapılan literatürdeki bazı çalışmalardan oluşmaktadır. İkinci kısımda, çalışmada kullanılacak temel tanım, örnek ve teoremlere yer verilmiştir. Üçüncü kısımda, ?-Caputo kesirli türev içeren çok noktalı sınır değer probleminin çözümlerinin varlığı incelenmiş ve Banach, Schauder, Schaefer sabit nokta teoremleri kullanılarak çözümlerin varlığı ispatlanmıştır. Ayrıca çalıştığımız problem için alt ve üst çözümler tanımlanmış, alt ve üst çözümler yardımıyla incelenen problemin en az bir çözümünün varlığı ispatlanmıştır. Elde edilen sonuçları destekleyen bir örnek verilmiştir. Sonuç kısmında da bu çalışmalardan elde edilen sonuçlar irdelenmiştir.
In this thesis, there are four parts. The first section generally consists of the topic addressed in the thesis and some of the studies in the literature related to this topic. In the second part, basic definitions, examples and theorems to be used in the study are given. In the third part, the existence of solutions to the adjustable, multi-point boundary value problem with ?-Caputo constant derivative was examined and the existence of the solutions was proven through Banach, Schauder, Schaefer point theorems. In addition, lower and upper solutions have been developed for our problem, and the existence of at least one solution of the problem examined has been proven in the lower and upper solutions. An example is given to support the results obtained. In the conclusion section, the results obtained from these studies are examined.

Açıklama

Anahtar Kelimeler

Matematik, Mathematics

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye