On the structure of prime and semiprime rings with generalized skew derivations

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

World Scientific Publ Co Pte Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let R be a ring of characteristic different from 2, m,n,s >= 1 fixed positive integers, L a noncentral Lie ideal of R and F : R -> R a nonzero generalized skew derivation of R. We prove the following results: (a) If R is prime and there exists 0 not equal = a is an element of R such that a(F(x)F-m(y)(n)-y(n)x(m))(s)=0 for all x, y is an element of L then R subset of M (2)(K), the 2x2 matrix ring over a field K. (b) If R is semiprime and (F(x)F-m(y)(n)-y(n)x(m))s= 0 for all x, y is an element of L then either L centralizes a nonzero ideal of R or [s(4)(x(1),...,x(4)),x(5)]is a polynomial identity for R.

Açıklama

Anahtar Kelimeler

Generalized Skew Derivation, Prime Ring, Lie Ideal, Automorphism

Kaynak

Asian-European Journal of Mathematics

WoS Q Değeri

N/A

Scopus Q Değeri

Q3

Cilt

17

Sayı

5

Künye