Makine öğrenmesi teknikleri kullanılarak toksik alg ve biyotoksin varlığının tahmini

Yükleniyor...
Küçük Resim

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ege Üniversitesi, Fen Bilimleri Enstitüsü

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Bu tezde deniz suyunda yapılan analizlerdeki toksik alg türlerinin, midye gibi kabuklu deniz ürünlerinde tespit edilen biyotoksin ile arasında var olduğu düşünülen korelasyonun ortaya çıkarılması amaçlanmış olup, bunun yanında su ve midye üzerinde yapılan analizlerin bu duruma etkisi incelenmiştir. Midyelerde biriken biyotoksin, midyeyi tüketen insanlar için ciddi bir tehlikedir. Biyotoksin ve toksik fitoplankton varlığının tahmini de bu çalışmanın temelindedir. Üretim şartlarının sağlanması için zamana, deniz suyu ve midye analizleri için ise yüksek harcamalara ihtiyaç duyulmaktadır. Bu çalışmada ise biyotoksin ve toksik fitoplankton varlığının tahmini ile bu harcamaların önüne geçilebilineceği düşünülmektedir. Burada yapılan tahminler makine öğrenmesi teknikleri ile gerçekleştirilmiştir. Bu çalışma için yaklaşık 3 yıllık bir veri ele alınmıştır. Veri içeriğinde midyeden ve sudan alınan örneklerin fiziksel, kimyasal ve biyolojik analiz sonuçları bulunmaktadır. Mevcut veriye bakıldığında bir dengesizlik gözlenmektedir. Yani biyotoksin varlığına çok az rastlanmıştır. Bu durum literatürde "dengesiz veri" (imbalanced data) olarak adlandırılmaktadır. Dolayısıyla veri dengeli bir hale getirildikten sonra üzerinde makine öğrenmesi çalışmaları yapılmıştır. Yapılan çalışmalar neticesinde en başarılı tahmin, Rastgele Orman metodu ile elde edilmiştir.
In this thesis, it is aimed to reveal the correlation between the toxic algae species and the biotoxin detected in shellfish such as mussels in seawater analysis. In addition, the effect of water and mussel analysis on this situation was examined. The accumulation of biotoxins in mussels is a serious danger for people who consume mussels. Estimation of the presence of biotoxin and toxic phytoplankton is also the basis of this study. Time is needed to meet production conditions and high expenditure is required for sea water and mussel analyzes. In this study, it is thought that these expenditures can be prevented by estimating the presence of biotoxin and toxic phytoplankton. Estimates made here are made by machine learning techniques. For this study, a data of approximately 3 years has been discussed. Physical, chemical and biological analysis results of samples from mussel and water is available in the data content. An imbalance is observed in the current data. In other words, the presence of biotoxin is very rare. This is called imbalanced data in the literature. Therefore, after the data was stabilized, machine learning studies were carried out. As a result of the studies, the most successful estimation was obtained by the Random Forest method.

Açıklama

Anahtar Kelimeler

Makine Öğrenmesi, Rastgele Orman, Dengesiz Veri, Tahmin, Kabuklu Deniz Ürünleri, Biyotoksin, Machine Learning, Random Forest, Imbalanced Data, Prediction, Shellfish, Biotoxin

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye