On exponential domination of some graphs

Küçük Resim Yok

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

InforMath Publishing Group

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let G be a graph and S ? V(G). We denote by <S> the subgraph of G induced by S. For each vertex u ? S and for each v ? V(G) - S, we define d¯(u,v) = d¯(v,u) to be the length of the shortest path in (V(G) - (S - {u})) if such a path exists, and ? otherwise. Let v ? V(G). We define ws(v) = ?2u?S 1/2d¯(u,u)-1 if v ? S, and ws(v) = 2 if v ? S. If, for each v ? V(G), we have ws(v) ? 1, then S is an exponential dominating set. The smallest cardinality of an exponential dominating set is the exponential domination number ?e(G). In this paper, we consider the exponential domination number in total graphs. We determine the exponential domination number of T(G) for some specific graphs G. © 2016 InforMath Publishing Group.

Açıklama

Anahtar Kelimeler

Domination, Exponential domination number, Graph vulnerability, Network design and communication, Total graph

Kaynak

Nonlinear Dynamics and Systems Theory

WoS Q Değeri

Scopus Q Değeri

Q3

Cilt

16

Sayı

1

Künye