Asymmetric unimodal maps: Some results from q-generalized bit cumulants
Küçük Resim Yok
Tarih
2000
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
American Physical Soc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
study, using q-generalized bit cumulants (q is the nonextensivity parameter of the recently introduced Tsallis statistics), we investigate the asymmetric unimodal maps x(t+1)= 1 - a /x(t)/(zi) (i = 1,2 correspond to x(t) >0 and x(t)<0, respectively; z(i)>1, 0<a less than or equal to2, t=0,1,2,...). The study of the q-generalized second cumulant C-2((q)) of these maps allows us to determine the dependence of the nonextensivity parameter q on the inflection parameter pairs (z(1),z(2)). The slope of the C-2((q)) versus C ((l))(2) Plot (where C-2((1)) is the standard second cumulant) provides the necessary tool to accomplish this task. The slope behaves exactly the same as the proper q values (say q*) that were obtained for logisticlike maps (z(1)=z(2)=z) by Costa et al. [Phys. Rev. E 56, 245 (1997)]. It appears that as z(2) - z(1)->+/- infinity this slope approaches unity. This behavior is very similar to the behavior of q* as a function of the inflection parameter for some z-dependent maps; namely, as z->infinity, q* approaches 1.
Açıklama
Anahtar Kelimeler
Kaynak
Physical Review E
WoS Q Değeri
Q1
Scopus Q Değeri
N/A
Cilt
62
Sayı
6