Independence of countable sets of formulas of the propositional logic
Küçük Resim Yok
Tarih
2013
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Charles Babbage Research Centre
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we prove that every countable set of formulas of the propositional logic has at least one equivalent independent subset. We illustrate the situation by considering axioms for Boolean algebras; the proof of independence we give uses model forming.
Açıklama
Anahtar Kelimeler
Axiomatizability, Classical logic, Completeness, Consistence, Independence
Kaynak
Ars Combinatoria
WoS Q Değeri
Scopus Q Değeri
Q4
Cilt
112