Independence of countable sets of formulas of the propositional logic

Küçük Resim Yok

Tarih

2013

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Charles Babbage Research Centre

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, we prove that every countable set of formulas of the propositional logic has at least one equivalent independent subset. We illustrate the situation by considering axioms for Boolean algebras; the proof of independence we give uses model forming.

Açıklama

Anahtar Kelimeler

Axiomatizability, Classical logic, Completeness, Consistence, Independence

Kaynak

Ars Combinatoria

WoS Q Değeri

Scopus Q Değeri

Q4

Cilt

112

Sayı

Künye